干货分享(java工作中会用到网络编程吗)java是一个网络编程语言,简单易学,利用了,Tars-Java网络编程源码分析,java 网络编程源码,
本文从Java NIO网络编程的基础知识讲到了Tars框架使用NIO进行网络编程的源码分析。
一、Tars框架基本介绍
Tars是腾讯开源的支持多语言的高性能RPC框架,起源于腾讯内部2008年至今一直使用的统一应用框架TAF(Total Application Framework),目前支持C++、Java、PHP、Nodejs、Go语言。
该框架为用户提供了涉及到开发、运维、以及测试的一整套解决方案,帮助一个产品或者服务快速开发、部署、测试、上线。它集可扩展协议编解码、高性能RPC通信框架、名字路由与发现、发布监控、日志统计、配置管理等于一体,通过它可以快速用微服务的方式构建自己的稳定可靠的分布式应用,并实现完整有效的服务治理。
官方仓库地址:
https://github.com/TarsCloud/Tars
vivo推送平台也深度使用了该框架,部署服务节点超过一千个,经过线上每日一百多亿消息推送量的考验。
此前已在vivo互联网技术公众号发布过《Tars Java 客户端源码分析》此篇文章为续集。
Tars-java 最新稳定版1.7.2以及之前的版本都使用Java NIO进行网络编程;本文将分别详细介绍java NIO的原理和Tars 使用NIO进行网络编程的细节。
二、Java NIO原理介绍
从1.4版本开始,Java提供了一种新的IO处理方式:NIO (New IO 或 Non-blocking IO) 是一个可以替代标准Java IO 的API,它是面向缓冲区而不是字节流,它是非阻塞的,支持IO多路复用。
2.1 Channels (通道) and Buffers (缓冲区)
标准的IO基于字节流进行操作的,而NIO是基于通道(Channel)和缓冲区(Buffer)进行操作。数据总是从通道读取到缓冲区中,或者从缓冲区写入到通道中,下图是一个完整流程。
Channel类型:
支持文件读写数据的FileChannel能通过UDP读写网络中的数据的DatagramChannel能通过TCP读写网络数据的SocketChannel可以监听新进来的TCP连接,对每一个新进来的连接都会创建一个SocketChannel的ServerSocketChannel 。SocketChannel:
打开 SocketChannel:SocketChannel socketChannel = SocketChannel.open();关闭 SocketChannel:socketChannel.close();从Channel中读取的数据放到Buffer: int bytesRead = inChannel.read(buf);将Buffer中的数据写到Channel: int bytesWritten = inChannel.write(buf);ServerSocketChannel:
通过
ServerSocketChannel.accept() 方法监听新进来的连接,当accept()方法返回的时候,它返回一个包含新进来的连接的SocketChannel,因此accept()方法会一直阻塞到有新连接到达。通常不会仅仅只监听一个连接,在while循环中调用 accept()方法. 如下面的例子:
代码1:
while(true){SocketChannel socketChannel = serverSocketChannel.accept();//do something with socketChannel...}ServerSocketChannel可以设置成非阻塞模式。在非阻塞模式下,accept() 方法会立刻返回,如果还没有新进来的连接,返回的将是null。因此,需要检查返回的SocketChannel是否是null。
代码2:
ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();serverSocketChannel.socket().bind(new InetSocketAddress(8888));serverSocketChannel.configureBlocking(false);while(true){SocketChannel socketChannel = serverSocketChannel.accept();if(socketChannel != null){//do something with socketChannel...}}Buffer类型:
ByteBufferCharBufferDoubleBufferFloatBufferIntBufferLongBufferShortBufferBuffer的分配:
ByteBuffer buf = ByteBuffer.allocate(2048);
Buffer的读写:
一般是以下四个步骤:
写入数据到Buffer,最大写入量是capacity,写模式下limit值即为capacity值,position即为写到的位置。调用flip()方法将Buffer从写模式切换到读模式,此时position移动到开始位置0,limit移动到position的位置。从Buffer中读取数据,在读模式下可以读取之前写入到buffer的所有数据,即为limit位置。调用clear()方法或者compact()方法。clear()方法将position设为0,limit被设置成capacity的值。compact()方法将所有未读的数据拷贝到Buffer起始处,然后将position设到最后一个未读元素后面。mark() 与 reset()方法通过调用Buffer.mark()方法,可以标记Buffer中的一个特定position,之后可以通过调用Buffer.reset()方法恢复到这个position。
duplicate()
此方法返回承载先前字节缓冲区内容的新字节缓冲区。
remaining()limit 减去 position的值
2.2 Selector(选择器)
Java NIO引入了选择器的概念,选择器用于监听多个通道的事件。单个的线程可以监听多个数据通道。要使用Selector,得向Selector注册Channel,然后调用它的select()方法。这个方法会一直阻塞到某个注册的通道有事件就绪。一旦这个方法返回,线程就可以处理这些事件。
线程使用一个selector处理多个channel
代码3:
channel.configureBlocking(false);SelectionKey key = channel.register(selector,Selectionkey.OP_READ);注意register()方法的第二个参数,这是一个监听的集合,即在通过Selector监听Channel时关注什么事件集合。
SelectionKey包含:
1) interest集合:selectionKey.interestOps() 可以监听四种不同类型的事件:OP_ACCEPT、OP_CONNECT、OP_WRITE、OP_READ
2) ready集合:selectionKey.readyOps(); ready 集合是通道已经准备就绪的操作的集合,提供4个方便的方法:
selectionKey.isAcceptable();selectionKey.isConnectable();selectionKey.isReadable();selectionKey.isWritable();3) Channel:selectionKey.channel();
4) Selector:selectionKey.selector();
5) 可选的附加对象:
selectionKey.attachment(); 可以将一个对象或者更多信息附着到SelectionKey上,这样就能方便的识别特定的通道。
提示:
OP_ACCEPT和OP_CONNECT的区别:简单来说,客户端建立连接是connect,服务器准备接收连接是accept。一个典型的客户端服务器网络交互流程如下图
selectedKeys()
一旦调用了select()方法,并且返回值表明有一个或更多个通道就绪了,然后可以通过调用selector的selectedKeys()方法,访问已选择键集(selected key set)中的就绪通道。
wakeUp()某个线程调用select()方法后阻塞了,即使没有通道已经就绪,也有办法让其从select()方法返回。只要让其它线程在阻塞线程调用select()方法的对象上调用Selector.wakeup()方法即可。阻塞在select()方法上的线程会立马返回。如果有其它线程调用了wakeup()方法,但当前没有线程阻塞在select()方法上,下个调用select()方法的线程会立即wake up。
close()用完Selector后调用其close()方法会关闭该Selector,且使注册到该Selector上的所有SelectionKey实例无效。通道本身并不会关闭。
通过Selector选择通道:
int select() 阻塞直到至少有一个通道在你注册的事件上就绪了int select(long timeout) 增加最长阻塞毫秒数int selectNow() 不会阻塞,不管什么通道就绪都立刻返回三、 Tars NIO网络编程
了解完 Java NIO的原理,我们来看看Tars是如何使用NIO进行网络编程的。
Tars的网络模型是多reactor多线程模型。有一点特殊的是tars的reactor线程组里随机选一个线程处理网络事件,并且该线程同时也能处理读写。
核心类之间的关系如下:
3.1 一个典型的Java NIO服务端开发流程
创建ServerSocketChannel,设置为非阻塞,并绑定端口创建Selector对象给ServerSocketChannel注册SelectionKey.OP_ACCEPT事件启动一个线程循环,调用Selector的select方法来检查IO就绪事件,一旦有IO就绪事件,就通知用户线程去处理IO事件如果有Accept事件,就创建一个SocketChannel,并注册SelectionKey.OP_READ如果有读事件,判断一下是否全包,如果全包,就交给后端线程处理写事件比较特殊。isWriteable表示的是本机的写缓冲区是否可写。这个在绝大多少情况下都是为真的。在Netty中只有写半包的时候才需要注册写事件,如果一次写就完全把数据写入了缓冲区就不需要注册写事件。3.2 Tars客户端发起请求到服务器的流程
Communicator.stringToProxy() 根据servantName等配置信息创建通信器。ServantProxyFactory.getServantProxy() 调用工厂方法创建servant代理。ObjectProxyFactory.getObjectProxy() 调用工厂方法创建obj代理。TarsProtocolInvoker.create() 创建协议调用者。ServantProtocolInvoker.initClient(Url url) 根据servantProxyConfig中的配置信息找到servant的ip端口等进行初始化ServantClient。ClientPoolManager.getSelectorManager() 如果第一次调用selectorManager是空的就会去初始化selectorManager。reactorSet = new Reactor[selectorPoolSize]; SelectorManager初始化构造类中的会根据selectorPoolSize(默认是2)的配置创建Reactor线程数组。线程名称的前缀是servant-proxy-加上CommunicatorId,CommunicatorId生成规则是由locator的地址生成的UUID。启动reactor线程。3.3 Tars服务端启动步骤
tars支持TCP和UDP两种协议,RPC场景下是使用TCP协议。new SelectorManager() 根据配置信息初始化selectorManager,线程池大小 processors > 8 ? 4 + (processors * 5 / 8) : processors + 1;线程名称前缀是server-tcp-reactor,然后启动reactor线程数组中的所有线程。开启服务端监听的ServerSocketChannel,绑定服务端本地ip和监听的端口号,设置TCP连接请求队列的最大容量为1024;设置非阻塞模式。选取reactor线程数组中第0个线程作为服务端监听连接OP_ACCEPT就绪事件的线程。代码4:
public void bind(AppService appService) throws IOException {// 此处略去非关键代码if (endpoint.type().equals("tcp")) { // 1this.selectorManager = newSelectorManager(Utils.getSelectorPoolSize(),new ServantProtocolFactory(codec), threadPool, processor, keepAlive, "server-tcp-reactor", false); // 2this.selectorManager.setTcpNoDelay(serverCfg.isTcpNoDelay());this.selectorManager.start();ServerSocketChannel serverChannel = ServerSocketChannel.open();serverChannel.socket().bind(new InetSocketAddress(endpoint.host(), endpoint.port()), 1024); // 3serverChannel.configureBlocking(false);selectorManager.getReactor(0).registerChannel(serverChannel, SelectionKey.OP_ACCEPT); // 4} else if (endpoint.type().equals("udp")) {this.selectorManager = new SelectorManager(1,new ServantProtocolFactory(codec), threadPool, processor, false, "server-udp-reactor", true);this.selectorManager.start();// UDP开启的是DatagramChannelDatagramChannel serverChannel = DatagramChannel.open();DatagramSocket socket = serverChannel.socket();socket.bind(newInetSocketAddress(endpoint.host(), endpoint.port()));serverChannel.configureBlocking(false);// UDP协议不需要建连,监听的是OP_READ就绪事件this.selectorManager.getReactor(0).registerChannel(serverChannel, SelectionKey.OP_READ);}}3.4 Reactor线程启动流程
多路复用器开始轮询检查 是否有就绪的事件。处理register队列中剩余的channel注册到当前reactor线程的多路复用器selector中。获取已选键集中所有就绪的channel。更新Session中最近操作时间,Tars服务端启动时会调用 startSessionManager() , 单线程每30s扫描一次session会话列表,会检查每个session的 lastUpdateOperationTime 与当前时间的时间差,如果超过60秒会将过期session对应的channel踢除。分发IO事件进行处理。处理unregister队列中剩余的channel,从当前reactor线程的多路复用器selector中解除注册。代码5:
public void run() {while (!Thread.interrupted()) {selector.select(); // 1processRegister(); // 2Iterator<SelectionKey> iter = selector.selectedKeys().iterator(); // 3while(iter.hasNext()) {SelectionKey key = iter.next();iter.remove();if (!key.isValid()) continue;try {if (key.attachment() != null&& key.attachment() instanceof Session) {((Session) key.attachment()).updateLastOperationTime();//4}dispatchEvent(key); // 5} catch(Throwable ex) {disConnectWithException(key, ex);}}processUnRegister();// 6}}3.5 IO事件分发处理
每个reactor线程都有一个专门的Accepter类去处理各种IO事件。TCPAccepter可以处理全部的四种事件(OP_ACCEPT、OP_CONNECT、OP_WRITE、OP_READ)、UDPAccepter由于不需要建立连接所以只需要处理读和写两种事件。
1. 处理OP_ACCEPT
获取channel,处理TCP请求。为这个TCP请求创建TCPSession,会话的状态是服务器已连接会话注册到sessionManager中,Tars服务可配置最大连接数maxconns,如果超过就会关闭当前会话。寻找下一个reactor线程进行多路复用器与channel的绑定。代码6:
public void handleAcceptEvent(SelectionKey key) throws IOException {ServerSocketChannel server = (ServerSocketChannel) key.channel();// 1SocketChannel channel = server.accept();channel.socket().setTcpNoDelay(selectorManager.isTcpNoDelay());channel.configureBlocking(false);Utils.setQosFlag(channel.socket());TCPSession session = new TCPSession(selectorManager); // 2session.setChannel(channel);session.setStatus(SessionStatus.SERVER_CONNECTED);session.setKeepAlive(selectorManager.isKeepAlive());session.setTcpNoDelay(selectorManager.isTcpNoDelay());SessionManager.getSessionManager().registerSession(session);// 3selectorManager.nextReactor().registerChannel(channel, SelectionKey.OP_READ, session);// 4}2. 处理OP_CONNECT
获取客户端连接过来的channel通道获取Session与服务器建立连接,将关注的兴趣OPS设置为ready就绪事件,session中的状态修改为客户端已连接代码7:
public void handleConnectEvent(SelectionKey key) throws IOException {SocketChannel client = (SocketChannel) key.channel(); // 1TCPSession session = (TCPSession) key.attachment(); //2if (session == null) throw new RuntimeException("The session is null when connecting to ...");try { // 3client.finishConnect();key.interestOps(SelectionKey.OP_READ);session.setStatus(SessionStatus.CLIENT_CONNECTED);}finally {session.finishConnect();}}3.处理OP_WRITE、 处理OP_READ
调用session.read()和session.doWrite() 方法处理读写事件
代码8:
public void handleReadEvent(SelectionKey key) throws IOException {TCPSession session = (TCPSession) key.attachment();if (session == null) throw new RuntimeException("The session is null when reading data...");session.read();}public void handleWriteEvent(SelectionKey key) throws IOException {TCPSession session = (TCPSession) key.attachment();if (session == null) throw new RuntimeException("The session is null when writing data...");session.doWrite();}3.6 seesion中网络读写的事件详细处理过程
1. 读事件处理
申请2k的ByteBuffer空间,读取channel中的数据到readBuffer中。根据sessionStatus判断是客户端读响应还是服务器读请求,分别进行处理。
代码9:
protected void read() throws IOException {int ret = readChannel();if (this.status == SessionStatus.CLIENT_CONNECTED) {readResponse();}else if (this.status == SessionStatus.SERVER_CONNECTED) {readRequest();} else {throw new IllegalStateException("The current session status is invalid. [status:" + this.status + "]");}if (ret < 0) {close();return;}}privateint readChannel() throws IOException {int readBytes =0, ret = 0;ByteBuffer data = ByteBuffer.allocate(1024 * 2); // 1if (readBuffer == null) {readBuffer = IoBuffer.allocate(bufferSize);}// 2while ((ret = ((SocketChannel) channel).read(data)) > 0) {data.flip(); // 3readBytes += data.remaining();readBuffer.put(data.array(),data.position(), data.remaining());data.clear();}return ret < 0 ? ret : readBytes;}① 客户端读响应
从当前readBuffer中的内容复制到一个新的临时buffer中,并且切换到读模式,使用TarsCodec类解析出buffer内的协议字段到response,WorkThread线程通知Ticket处理response。如果response为空,则重置tempBuffer到mark的位置,重新解析协议。
代码10:
public void readResponse(){Response response =null;IoBuffer tempBuffer = null;tempBuffer = readBuffer.duplicate().flip();while (true) {tempBuffer.mark();if(tempBuffer.remaining() >0) {response = selectorManager.getProtocolFactory().getDecoder().decodeResponse(tempBuffer, this);} else {response = null;}if(response !=null) {if(response.getTicketNumber() == Ticket.DEFAULT_TICKET_NUMBER) response.setTicketNumber(response.getSession().hashCode());selectorManager.getThreadPool().execute(new WorkThread(response, selectorManager));} else{tempBuffer.reset();readBuffer = resetIoBuffer(tempBuffer);break;}}}② 服务器读请求
任务放入线程池交给 WorkThread线程,最终交给Processor类出构建请求的响应体,包括分布式上下文,然后经过FilterChain的处理,最终通过jdk提供的反射方法invoke服务端本地的方法然后返回response。如果线程池抛出拒绝异常,则返回SERVEROVERLOAD = -9,服务端过载保护。如果request为空,则重置tempBuffer到mark的位置,重新解析协议。
代码11:
public void readRequest() {Request request = null;IoBuffer tempBuffer = readBuffer.duplicate().flip();while (true) {tempBuffer.mark();if (tempBuffer.remaining() > 0) {request = selectorManager.getProtocolFactory().getDecoder().decodeRequest(tempBuffer,this);} else {request = null;}if (request != null) {try{request.resetBornTime();selectorManager.getThreadPool().execute(new WorkThread(request, selectorManager));} catch(RejectedExecutionException e) {selectorManager.getProcessor().overload(request, request.getIoSession());}catch (Exception ex) {ex.printStackTrace();}} else{tempBuffer.reset();readBuffer = resetIoBuffer(tempBuffer);break;}}}2. 写事件处理
同样也包括客户端写请求和服务端写响应两种,其实这两种都是往TCPSession中的LinkedBlockingQueue(有界队列最大8K)中插入ByteBuffer。LinkedBlockingQueue中的ByteBuffer最终会由TCPAcceptor中的handleWriteEvent监听写就绪事件并消费。
代码12:
protected void write(IoBuffer buffer) throws IOException {if(buffer ==null) return;if (channel == null || key == null) throw new IOException("Connection is closed");if (!this.queue.offer(buffer.buf())) {throw new IOException("The session queue is full. [ queue size:" + queue.size() + " ]");}if (key != null) {key.interestOps(key.interestOps() | SelectionKey.OP_WRITE);key.selector().wakeup();}}四、总结
本文主要介绍了Java NIO编程的基础知识 和 Tars-Java 1.7.2版本的网络编程模块的源码实现。
在最新的Tars-Java的master分支中我们可以发现网络编程已经由NIO改成了Netty,虽然Netty更加成熟稳定,但是作为学习者了解NIO的原理也是掌握网络编程的必经之路。
更多关于Tars框架的介绍可以访问:
https://tarscloud.org/
本文分析源码地址(v1.7.x分支):
https://github.com/TarsCloud/TarsJava
作者:vivo 互联网服务器团队- Jin Kai
来源:微信公众号:vivo互联网技术
出处
:https://mp.weixin.qq.com/s/7iBz64uvuBar_i3k9VofGQ本文系作者 @河马 原创发布在河马博客站点。未经许可,禁止转载。
暂无评论数据