1 需求分析

1.1 分析压测对象

1)什么是ClickHouse 和Elasticsearch

ClickHouse 是一个真正的列式数据库管理系统(DBMS)。在 ClickHouse 中,数据始终是按列存储的,包括矢量(向量或列块)执行的过程。只要有可能,操作都是基于矢量进行分派的,而不是单个的值,这被称为矢量化查询执行,它有利于降低实际的数据处理开销。

Elasticsearch是一个开源的分布式、RESTful 风格的搜索和数据分析引擎,它的底层是开源库Apache Lucene。 它可以被这样准确地形容:

一个分布式的实时文档存储,每个字段可以被索引与搜索

一个分布式实时分析搜索引擎

能胜任上百个服务节点的扩展,并支持 PB 级别的结构化或者非结构化数据

2)为什么要对他们进行压测

众所周知,ClickHouse在基本场景表现非常优秀,性能优于ES,但是我们实际的业务查询中有很多是复杂的业务查询场景,甚至是大数量的查询,所以为了在双十一业务峰值来到前,确保大促活动峰值业务稳定性,针对ClickHouse 和Elasticsearch在我们实际业务场景中是否拥有优秀的抗压能力,通过这次性能压测,探测系统中的性能瓶颈点,进行针对性优化,从而提升系统性能。

1.2 制定压测目标

为什么会选择这个(queryOBBacklogData)接口呢?

1)从复杂度来看,接口(queryOBBacklogData)查询了5次,代码如下:

/** * 切ck-queryOBBacklogData * @param queryBO * @return */public OutboundBacklogRespBO queryOBBacklogDataCKNew(OutboundBacklogQueryBO queryBO) { log.info(" queryOBBacklogDataCK入参:{}", JSON.toJSONString(queryBO)); // 公共条件-卡最近十天时间 String commonStartTime = DateUtils.getTime(DateUtil.format(new Date(), DateUtil.FORMAT_DATE), DateUtils.ELEVEN_AM, 1, -10); String commonEndTime = DateUtils.getTime(DateUtil.format(new Date(), DateUtil.FORMAT_DATE), DateUtils.ELEVEN_AM, 1, 1); // 越库信息-待越库件数&待越库任务数 WmsObCrossDockQueryBo wmsObCrossDockQueryBo = wmsObCrossDockQueryBoBuilder(queryBO,commonStartTime, commonEndTime); log.info("queryOBBacklogDataCK-wmsObCrossDockQueryBo: {}", JSON.toJSONString(wmsObCrossDockQueryBo)); CompletableFuture<OutboundBacklogRespBO> preCrossDockInfoCF = CompletableFuture.supplyAsync( () -> wmsObCrossDockMapper.preCrossDockInfo(wmsObCrossDockQueryBo), executor); // 集合任务信息-待分配订单 WmsObAssignOrderQueryBo wmsObAssignOrderQueryBo = wmsObAssignOrderQueryBoBuilder(queryBO, commonStartTime, commonEndTime); log.info("queryOBBacklogDataCK-wmsObAssignOrderQueryBo: {}", JSON.toJSONString(wmsObAssignOrderQueryBo)); CompletableFuture<Integer> preAssignOrderQtyCF = CompletableFuture.supplyAsync( () -> wmsObAssignOrderMapper.preAssignOrderInfo(wmsObAssignOrderQueryBo), executor); // 拣货信息-待拣货件数&待拣货任务数 WmsPickTaskQueryBo wmsPickTaskQueryBo = wmsPickTaskQueryBoBuilder(queryBO, commonStartTime, commonEndTime); log.info("queryOBBacklogDataCK-wmsPickTaskQueryBo: {}", JSON.toJSONString(wmsPickTaskQueryBo)); CompletableFuture<OutboundBacklogRespBO> prePickingInfoCF = CompletableFuture.supplyAsync( () -> wmsPickTaskMapper.pickTaskInfo(wmsPickTaskQueryBo), executor); // 分播信息-待分播件数&待分播任务 WmsCheckTaskDetailQueryBo wmsCheckTaskDetailQueryBo = wmsCheckTaskDetailQueryBoBuilder(queryBO, commonStartTime, commonEndTime); log.info("queryOBBacklogDataCK-wmsCheckTaskDetailQueryBo: {}", JSON.toJSONString(wmsCheckTaskDetailQueryBo)); CompletableFuture<OutboundBacklogRespBO> preSowInfoCF = CompletableFuture.supplyAsync( () -> wmsCheckTaskDetailMapper.checkTaskDetailInfo(wmsCheckTaskDetailQueryBo), executor); // 发货信息-待发货件数 WmsOrderSkuQueryBo wmsOrderSkuQueryBo = wmsOrderSkuQueryBoBuilder(queryBO, commonStartTime, commonEndTime); log.info("queryOBBacklogDataCK-wmsOrderSkuQueryBo: {}", JSON.toJSONString(wmsOrderSkuQueryBo)); CompletableFuture<Integer> preDispatchCF = CompletableFuture.supplyAsync( () -> wmsOrderSkuMapper.preDispatchInfo(wmsOrderSkuQueryBo), executor); return processResult(preCrossDockInfoCF, preAssignOrderQtyCF, prePickingInfoCF, preSowInfoCF, preDispatchCF);}

2)接口(queryOBBacklogData),总共查询了5个表,如下:

wms.wms_ob_cross_dockwms.wms_ob_assign_orderwms.wms_picking_task.wms.wms_check_task_detailwms.wms_order_sku

3)查询的数据量,如下:

select (ifnull(sum(m.shouldBeCrossedDockQty), 0) - ifnull(sum(m.satisfiedCrossedDockQty), 0)) as preCrossStockSkuQty, count(m.docId) as preCrossStockTaskQtyfrom wms.wms_ob_cross_dock m final prewhere m.createTime >= 2021-12-03 11:00:00 and m.createTime <= 2021-12-14 11:00:00 and m.warehouseNo = 279_1 and m.orderType = 10 and tenantCode = TC90230202where m.deleted = 0 and m.deliveryDestination = 2 and m.shipmentOrderDeleted = 0 and m.status = 0

从上面SQL截图可以看出,查询待越库件数&待越库任务数,共读了720817行数据

select count(distinct m.orderNo) as preAssignedOrderQtyfrom wms.wms_ob_assign_order m final prewhere m.createTime >= 2021-12-03 11:00:00 and m.createTime <= 2021-12-14 11:00:00 and m.warehouseNo = 361_0 and tenantCode = TC90230202where m.taskassignStatus = 0 and m.deliveryDestination = 2 and m.stopProductionFlag = 0 and m.deleted = 0 and m.orderType = 10

从上面SQL截图可以看出,查询集合任务信息-待分配订单,共读了153118行数据

select minus(toInt32(ifnull(sum(m.locateQty), toDecimal64(0, 4))), toInt32(ifnull(sum(m.pickedQty), toDecimal64(0, 4)))) as prePickingSkuQty, count(distinct m.taskNo) as prePickingTaskQtyfrom wms.wms_picking_task m final prewhere m.shipmentOrderCreateTime >= 2021-12-03 11:00:00 and m.shipmentOrderCreateTime <= 2021-12-14 11:00:00 and m.warehouseNo = 286_1 and tenantCode = TC90230202where m.pickingTaskDeleted = 0 and m.deliveryDestination = 2 and m.pickLocalDetailDeleted = 0 and m.shipmentOrderDeleted = 0 and m.orderType = 10 and (m.operateStatus = 0 or m.operateStatus = 1)

从上面SQL截图可以看出,查询拣货信息-待拣货件数&待拣货任务数,共读了2673536行数据

select minus(toInt32(ifnull(sum(m.locateQty), toDecimal64(0, 4))), toInt32(ifnull(sum(m.pickedQty), toDecimal64(0, 4)))) as prePickingSkuQty, count(distinct m.taskNo) as prePickingTaskQtyfrom wms.wms_picking_task m finalprewhere m.shipmentOrderCreateTime >= 2021-12-03 11:00:00 and m.shipmentOrderCreateTime <= 2021-12-14 11:00:00 and m.warehouseNo = 279_1 and tenantCode = TC90230202where m.pickingTaskDeleted = 0 and m.deliveryDestination = 2 and m.pickLocalDetailDeleted = 0 and m.shipmentOrderDeleted = 0 and m.orderType = 10 and (m.operateStatus = 0 or m.operateStatus = 1)

从上面SQL截图可以看出,查询分播信息-待分播件数&待分播任务,共读了1448149行数据

select ifnull(sum(m.unTrackQty), 0) as unTrackQtyfrom wms.wms_order_sku m final prewhere m.shipmentOrderCreateTime >= 2021-12-03 11:00:00 and m.shipmentOrderCreateTime <= 2021-12-14 11:00:00 and m.warehouseNo = 280_1 and m.orderType = 10 and m.deliveryDestination = 2 and tenantCode = TC90230202where m.shipmentOrderDeleted <> 1 and m.ckDeliveryTaskDeleted <> 1 and m.ckDeliveryTaskDetailDeleted <> 1 and m.ckDeliveryTaskStatus in (1,0,2)

从上面SQL截图可以看出,查询发货信息-待发货件数,共读了99591行数据

2 测试环境准备

为了尽可能发挥性能压测作用,性能压测环境应当尽可能同线上环境一致,所以我们使用了和线上一样的环境

3 采集工具准备

监控工具

http://origin.jd.com/ :监控JVM,方法级别监控(提供秒级支持)

http://console.jex.jd.com/ :提供异常堆栈监控,火焰图监控、线程堆栈分析

http://x.devops.jdcloud.com/ :支持查看clickhouse/Elasticsearch数据库服务每个节点的cpu使用率

http://dashboard.fireeye.jdl.cn/ :监测应用服务器cpu使用率、内存使用率

4 压测执行及结果分析

4.1 编写压测脚本工具

Forcebot(http://forcebot.jd.com) 是专门为开发人员、测试人员提供的性能测试平台,通过编写脚本、配置监控、设置场景、启动任务、实时监控、日志定位、导出报告一系列操作流程来完成性能测试,灵活的脚本配置满足同步、异步、集合点等多种发压模式。

帮助文档(http://doc.jd.com/forcebot/helper/)

4.2 设计压测数据

4.2.1 前期压测中名词解释

DBCP:数据库连接池,是 apache 上的一个Java连接池项目。DBCP通过连接池预先同数据库建立一些连接放在内存中(即连接池中),应用程序需要建立数据库连接时直接到从接池中申请一个连接使用,用完后由连接池回收该连接,从而达到连接复用,减少资源消耗的目的。

maxTotal:是连接池中总连接的最大数量,默认值8

max_thread:clickhouse中底层配置,处理SQL请求时使用的最大线程数。默认值是clickhouse服务器的核心数量。

coordinating:协调节点数,主要作用于请求转发,请求响应处理等轻量级操作

数据节点:主要是存储索引数据的节点,主要对文档进行增删改查操作,聚合操作等。数据节点对cpu,内存,io要求较高, 在优化的时候需要监控数据节点的状态,当资源不够的时候,需要在集群中添加新的节点

4.2.2 压测数据

clickhouse数据服务:32C128G6节点

2副本

应用服务器:4核8G2maxTotal=16

注:每次压测前,一定要观察每个数据节点的cpu使用率

注:从上面压测过程中,序号6-12可以看出,并发用户数在增加,但tps没有幅度变化,检查发现bigdata dbcp数据库链接池最大线程数未配置,默认最大线程数是8,并发用户数增加至8以后,clickhouse cpu稳定在40%~50%之间不再增加,应用服务器CPU稳定在25%左右。

之后我们调整maxTotal=50,通过调整max_thread不同的值,数据库节点CPU使用率保持在50%左右,来查看相应的监测数据指标:应用服务CPU使用率、TPS、TP99、并发用户数。

clickhouse数据节点,CPU使用率:

Elasticsearch数据服务:32C128G6节点

2副本

应用服务器:4核8G2Elasticsearch同样保持数据库服务CPU使用率达到(50%左右),再监控数据指标tps、tp99调整指标如下:coordinating协调节点数、 数据节点、poolSize

指标1:coordinating=2,数据节点=4,poolSize=400

注:在压测的过程中发现,coordinating节点的cpu使用率达到51.69%,负载均衡的作用受限,所以协调节点需扩容2个节点

指标2:coordinating=4,数据节点=5,poolSize=800

注:在压测的过程中,发现CPU使用率(数据库)ES数据节点在40%左右的时候,一直上不去,查看日志发现activeCount已经达到797,需要增加poolSize值

指标3:coordinating=4,数据节点=5,poolSize=1200

注:压测过程中,发现coordinating协调节点还是需要扩容,不能支持现在数据节点cpu使用率达到50%

Elasticsearch数据节点及协调节点,CPU使用率:

我们在压测的过程中发现一些之前在开发过程中没发现的问题,首先bdcp数bigdata应用服务器,使用的线程池最大线程数为8时,成为瓶颈,用户数增加至8以后, clickhouse的cpu稳定在40%~50%之间不在增加,应用服务器CPU稳定在25%左右,其次warehouse集群协调节点配置低,协调节点CPU使用率高,最后是clickhouse-jdbc JavaCC解析sql效率低。

4.3 结果分析

4.3.1 测试结论

1)clickhouse对并发有一定的支持,并不是不支持高并发,可以通过调整max_thread提高并发

max_thread=32时,支持最大TPS 是37,相应TP99是122

max_thread=2时,支持最大TPS 是66,相应TP99是155

max_thread=1时,支持最大TPS 是86,相应TP99是206

2)在并发方面Elasticsearch比clickhouse支持的更好,但是相应的响应速度慢很多

Elasticsearch:对应的TPS是192,TP99是3050

clickhouse:对应的TPS 是86,TP99是206

综合考量,我们认为clickhouse足以支撑我们的业务诉求

4.3.2 优化建议

对ES协调节点进行扩容

bigdata应用线程池最大线程数调高至200

bigdata应用 dbcp线程池maxTotal设置成50

读取配置文件工具类增加内存缓存

作者:潘雪艳

举报/反馈
分类: 源码分享 标签: 暂无标签

评论

暂无评论数据

暂无评论数据

目录